Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Pei-Liang Zhao, Wei Huang and Guang-Fu Yang*

Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail:
gfyang@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.056$
$w R$ factor $=0.138$
Data-to-parameter ratio $=15.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1'-tert-Butyl-2'-(2,2-dimethyl-4-oxochroman-6-carbonyl)benzohydrazide

In the crystal structure of the title compound, $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$, the six-membered heterocyclic ring adopts a half-chair conformation. Intermolecular hydrogen bonds are present.

Comment

Dibenzoylhydrazines are well known as non-steroidal ecdysone agonists that have the potential to control lepidopteran pests while exerting only a low toxicity against non-target insects (Yoshihiro et al., 2002). In addition, chroman derivatives also exhibit a wide spectrum of biological activity, including antiviral, anticancer and antibiotic properties (Cho et al., 1997). The title compound, (I), which may be a new precursor for obtaining bioactive molecules, was designed and synthesized in our laboratory. In this paper, we present the Xray crystallographic analysis of (I).

(I)

As shown in Fig. 1, the six-membered heterocyclic ring adopts a half-chair conformation. The puckering parameters (Cremer \& Pople, 1975) corresponding to the sequence O2$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$ are $Q=0.456$ (2) $\AA, \Phi_{2}=129.6(2)^{\circ}$ and $\Theta_{2}=265.8(4)^{\circ}$. The dihedral angle between the planes of the phenyl ring and the fused bicyclic ring system is $55.1(2)^{\circ}$

Figure 1

A view of the molecule of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.

Figure 2
Hydrogen bonding in the crystal structure of (I). Hydrogen bonds are shown as dashed lines. [Symmetry codes: $(b)-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{1}{2} ;(c) x$, $y-1, z$.]
(Fig. 1). The bond lengths and angles in the molecule are normal.

One intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond and two intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds exist in the crystal structure (Table 1 and Fig. 2). Atoms N1 and C9 in the molecule act as donors, via atoms $\mathrm{H} 1 B$ and $\mathrm{H} 9 B$, to atom O 4 of an adjacent molecule (Table 1). As a result, a seven-membered ring is formed between the molecules (Fig. 3). In addition, atom C 1 in the molecule acts as a donor, via atom $\mathrm{H} 1 A$, to atom O3 of an adjacent molecule (Table 1). No $\pi-\pi$ stacking interactions are observed in the crystal structure.

Experimental

A solution of 2,2-dimethyl-4-oxochroman-6-carboxylic acid N^{\prime}-tert-butyl-hydrazide (1.5 mmol) in dichloromethane (10 ml) was added dropwise to a stirred mixture of benzoyl chloride (1.5 mmol), triethylamine (1.6 mmol) and dichloromethane $(5 \mathrm{ml})$ in an ice bath. After the mixture had been stirred at room temperature for 3 h , ethyl acetate (30 ml) was added to the reaction mixture. The organic layer was separated and washed successively with water (15 ml) and brine $(15 \mathrm{ml})$, and then dried over anhydrous sodium sulfate. The solvent was evaporated, and the residue was purified by column chromatography on silica gel using hexane/ethyl acetate $(9: 1, v / v)$ as eluant to afford (I) (yield 58%, m.p. 484 K). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$, p.p.m.): $8.643(s, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 7.730(d, 1 \mathrm{H}, \mathrm{C} 9-\mathrm{H}), 7.702(d, 1 \mathrm{H}$, $\mathrm{C} 11-\mathrm{H}), 7.456$ ($m, 2 \mathrm{H}, \mathrm{C} 19-\mathrm{H}, \mathrm{C} 23-\mathrm{H}$), 7.259 ($m, 3 \mathrm{H}, \mathrm{C} 8-\mathrm{H}$, $\mathrm{C} 20-\mathrm{H}, \mathrm{C} 22-\mathrm{H}), 6.884(m, 1 \mathrm{H}, \mathrm{C} 21-\mathrm{H}), 2.709(s, 2 \mathrm{H}, \mathrm{C} 4-\mathrm{H})$, $1.644(m, 9 H, C 14-\mathrm{H}, \mathrm{C} 15-\mathrm{H}, \mathrm{C} 16-\mathrm{H}), 1.254(s, 6 \mathrm{H}, \mathrm{C} 1-\mathrm{H}, \mathrm{C} 2-$ H); MS (EI 70 eV$) \mathrm{m} / \mathrm{z}(\%): 394$ (6), 339 (100), 321 (16), 203 (88), 147 (12),105 (39), 77 (27). Crystals suitable for an X-ray diffraction study were grown from methanol at 292 K .

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=394.46$
Monoclinic, $P 2_{1} /{ }_{\Omega}$
$a=9.5123$ (12) \AA
$b=9.2752$ (11) \AA
$c=24.424$ (3) \AA
$\beta=95.967(2)^{\circ}$
$V=2143.2(5) \AA^{3}$
$Z=4$

Figure 3
The molecular packing of (I) viewed along the b axis. Dashed lines indicate hydrogen bonds.

Data collection

Bruker SMART 4K CCD areadetector diffractometer φ and ω scans
Absorption correction: none
16302 measured reflections
4217 independent reflections

$$
\begin{aligned}
& 2694 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.046 \\
& \theta_{\max }=26.0^{\circ} \\
& h=-11 \rightarrow 11 \\
& k=-11 \rightarrow 11 \\
& l=-30 \rightarrow 30
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.057 P)^{2} \\
&+0.2557 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.14 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.138$
$S=1.03$
4217 reflections
267 parameters

H -atom parameters constrained

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\text {i }}$	0.96	2.54	$3.500(3)$	177
N1-H1 $\cdots \mathrm{O}^{\text {ii }}$	0.86	2.09	$2.903(2)$	157
C9-H9 $\mathrm{O}^{4 i}$	0.93	2.49	$3.410(3)$	168

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with $\mathrm{C}-$ H distances of $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-0.97 \AA$, an $\mathrm{N}-\mathrm{H}$ distance of $0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the National Key Project for Basic Research (2002CCA00500), the National Natural Science Foundation of China (No. 20432010, 20476036 and 20172017), the Program for New Century Excellent Talents in Universities of China and the Program for Excellent Research Groups of Hubei Province (No. 2004ABC002).

organic papers

References

Bruker (1997). SMART (Version 5.054) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Cho, H., Katoh, S., Sayama, S., Murakami, K., Nakanishi, H., Kajimoto, Y., Ueno, H., Kawasaki, H., Aisaka, K. \& Uchida, I. (1996). J. Med. Chem. 39, 3797-3805.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sawada, Y., Yanai, T., Nakagawa, H., Tsukamoto, Y., Yokoi, S., Yanagi, M., Toya, T., Sugizaki, H., Kato, Y., Shirakura, H., Watanabe, T., Yajima, Y., Kodama, S, \& Masui, A. (2002). Pest Manag. Sci. 59, 36-48.

